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MAXIMUM LIKELIHOOD AND MINIMUM-STEPS
METHODS FOR ESTIMATING EVOLUTIONARY TREES
FROM DATA ON DISCRETE CHARACTERS

JosepH FELSENSTEIN

Abstract

Felsenstein, J. (Department of Genetics SK-50, University of Washington, Seattle,
Washington 98195). 1973. Maximum likelihood and minimum-steps methods for esti-
mating evolutionary trees from data on discrete characters. Syst. Zool. 22:240-249.—
The general maximum likelihood approach to the statistical estimation of phylogenies is
outlined, for data in which there are a number of discrete states for each character. The
details of the maximum likelihood method will depend on the details of the probabilistic
model of evolution assumed. There are a very large number of possible models of
evolution. For a few of the simpler models, the calculation of the likelihood of an
evolutionary tree is outlined. For these models, the maximum likelihood tree will be the
same as the “most parsimonious” (or minimum-steps) tree if the probability of change
during the evolution of the group is assumed a priori to be very small. However, most
sets of data require too many assumed state changes per character to be compatible with
this assumption. Farris (1973) has argued that maximum likelihood and parsimony
methods are identical under a much less restrictive set of assumptions. It is argued that
the present methods are preferable to his, and a counterexample to his argument is pre-
sented. An algorithm which enables rapid calculation of the likelihood of a phylogeny is

described. [Evolutionary trees: maximum likelihood.]

The first systematic attempt to apply
standard statistical inference procedures to
the estimation of evolutionary trees was
the work of Edwards and Cavalli-Sforza
(1964; see also Cavalli:Sforza and Edwards,
1967). At about the same time, the “par-
simony” or minimum evolutionary steps
method of Camin and Sokal (1965) gave a
great impetus to the development of well-
defined procedures for obtaining evolu-
tionary trees. Edwards and Cavalli-Sforza
concerned themselves with data from con-
tinuous variables such as gene frequencies
and quantitative characters. The Camin-
Sokal approach, on the other hand, was de-
veloped for characters which are recorded
as a series of discrete states. Although
some taxonomists have declared that the
problem of guessing phylogenies should be
viewed as a problem of statistical inference
(Farris, 1967, 1968; Throckmorton, 1968),
until recently there have been no attempts
to explore the relationship between the
statistical inference and minimum-steps
approaches. Recently, Farris (1973) has
presented a detailed argument that, under

certain reasonable assumptions, the maxi-
mum-likelihood method of statistical in-
ference appropriate to discrete-character
data is precisely the parsimony method of
Camin and Sokal. In this paper, I will
examine the application of maximum like-
lihood methods to discrete characters, and
will show that parsimony methods are not
maximum likelihood methods under the
assumptions made by Farris. They are
maximum likelihood methods under con-
siderably more restrictive assumptions
about evolution.

METHODS OF MAXIMUM LIKELIHOOD

Suppose that we want to estimate the
evolutionary tree, T, which is to be speci-
fied by the topological form of the tree
and the times of branching. We are given
a set of data, D, and a model of evolution,
M, which incorporates not only the evolu-
tionary processes, but also the processes of
sampling by which we obtained the data.
This model will usually be probabilistic,
involving random events such as changes
of the environment, occurrence of favorable
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TaBLE 1. SOME VARIABLE FEATURES OF A MODEL
OF EVOLUTION WITH DISCRETE CHARACTERS.

CHARACTER STATE TREES

Limited to the few states actually observed / Con-
tain further states beyond those observed / Con-
tain states preceding those observed / Contain
states preceding and following those observed.

Changes irreversible / Changes reversible.

Known / To be estimated from the data.

PROBABILITIES OF CHANGES
Same for all characters / Different.

Constant per unit time / Constant per segment of
the tree / Different in each segment of the tree.

Known / To be estimated from the data.

CHOICE OF CHARACTERS

Random / Only those which have changed at least
once in the group /Only those which have
changed at least once in some larger reference

" group / Only those in which all species do not
end up having the same state.

mutants, genetic drift, and the sampling of
a few individuals from the population by
the systematist. We can calculate the
probability Py(D|T) of obtaining the par-
ticular set of data (D) given the tree (T)
and the model (M). The maximum likeli-
hood estimate of the evolutionary tree is
that tree T which yields the largest value
of Py(D|T) for the fixed model M and
data D.

Now suppose that we have observed a
number of characters across a group. Each
character can assume a series of discrete
states. In our models, we oversimplify the
complex processes of mutation, natural se-
lection, and random genetic drift into
sudden changes from one state to another
along this character state tree. Even after
this oversimplification of the model of evo-
lution, there still seems to be an infinite
variety of possible models. Table 1 pre-
sents some of the variable features of a
model of evolution. There are enough al-
ternatives to result in 768 possible combina-
tions. No pretense is made that Table 1
is exhaustive.

Since it is obviously impossible to dis-
cuss all possible models, one of the simpler

ones will be discussed as an example. Sup-
pose that the probability of change is
known, constant per unit time, and the
same for all characters. The choice of char-
acters is random, and all the character state
trees are 0—>1->2—>3—>4— . . ., so that
changes are irreversible. We will calculate
the likelihood of the tree A in Figure 1,
using this model and the data shown in
that figure. The present is called time 0,
so that times in the past are negative: this
is purely a matter of convention. Let the
probability of change be u per unit time.
The probability of change during a small
interval of time of length dt will be u dt.
We have assumed that the probability of
change during any time interval is inde-
pendent of the times and numbers of pre-
vious changes. Thus the probability of k
changes during a time interval of length ¢
is the Poisson probability

e ut(ut)x/kl.

‘Now consider character 1. Since change
is irreversible, and species 3 and 4 have
state 0, the populations at points 5 and 6
on the tree must also have had state 0.
Therefore the segments below points 1, 2,
3, 4, and 5, segments whose lengths in time
are 0.96, 0.96, 1.10, 1.10, and 0.14 respec-
tively, must have had 2, 0, 2, 0 and 0
changes. The likelihood of the tree is the
probability of the data given the model
and the tree, a product of probabilities for
individual segments:

( 1 ) ]'_‘1 — e—0.96u (0.9611)2 (1/2!)e—0.96ue—1.100 .
(1.1011)2(1/2!) e—1.10ue—0.14u
= e426u(0.96u)2 (1.10u)2/4.

A directly analogous argument gives the
probability for character 2:
(2) Ly = e0-96ug-0-9u(0.96u)2(1/2!) -
e-1.10ue—1.10u ( 1.1011) 2 ( 1/21 ) e—0.14u
= e+26u(0.96u)2 (1.10u)?/4,

which happens, in this case, to be the same.
Character 3 raises a new problem. It is
not immediately apparent what was the
state at point 5 on the tree. It could have
been any of the states 0, 1, 2, or 3. We can
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calculate probabilities associated with each
of these alternatives. Since we are inter-
ested only in the overall probability of the
data given model and tree, we must sum
these four probabilities, getting

(3) Ls=e*26%(0.96u)3(0.96u)3/36
+ %209(0.96u)2(0.96u)?(0.14u) /4
+ %269(0.96u) (0.96u) (0.14u)?/2
+ e269(0.14u)3/6.

Since evolution in the different characters
is assumed to be independent, the overall
likelihood is the product L. = L Ly Ls. We
have not so far specified the value of u.
If we take u = 1, then we can use (1), (2),
and (3) to calculate that L = 1.3344 X 108
is the likelihood of tree A.

Knowing how to evaluate the likelihood
of a tree does not solve all of our problems.
We still have to find the maximum likeli-
hood tree. Existing methods for doing this
are slightly more sophisticated versions of
trial and error. Some initial guess at the
topology of the tree is made, and times for
the branch points are assigned. We make
small changes in these times, evaluating
the likelihood after each change. Any time
change which results in a higher likelihood
is accepted, and the new time becomes the
basis for further changes. If a change of
time does not result in a higher likelihood,
it is rejected, the branch point time being
left at its previous value. If changes of
times cause two branch points to “collide,”
it is natural to suspect that the topology
ought to be rearranged in that part of the
tree. Eventually, following such a pro-
cedure, we arrive at a tree which cannot
be improved by small alterations. This tree
is our guess of the maximum likelihood tree.
There is no guarantee that it is the true
maximum: all we know is that it is a local
maximum. Our algorithm is of the “hill-
climbing” type, and suffers from the com-
mon weakness of all such algorithms—they
climb the hill on which the starting point
happens to be located, and there is no
guarantee that this is the highest hill. One
would like some assurance that a hill-
climbing algorithm will always give the

Species

1 2 3 4

81|22 2 o0 o

DATA §2|/0 0 2 2
QS

§3/3 0o 3 o
TREE A
TREE B
TREE C

Fic. 1.—A set of data and three possible evo-
lutionary trees, used to illustrate maximum likeli-
hood estimation. See text for details.

maximum likelihood tree. If we knew that
whenever we started with the wrong tree
topology, we would always find that two
branch points would collide, then we could
have confidence that any topology in which
they did not collide, any topology with
an “intermal” maximum of the likelihood,
was the correct topology (although we
would still lack assurance that there is only
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one internal maximum for that topology).
Another approach would be to develop
some means of narrowing down the range
of possible trees, making use of the prop-
erties of the likelihood function. Estabrook
(1968) has done this for the parsimony
criterion. Hopefully the same can be done
for likelihood.

ESTIMATING ONLY THE TOPOLOGY

The procedures just described result in
a maximum likelihood estimate of the tree,
which is specified by the topology and the
times of the branch points. If we are in-
terested in estimating only the topology,
we can use one of two approaches. If we
had a probability model for the generation
of the tree topology and branch point times,
a model incorporating probabilities of
speciation and extinction events, we could
carry out direct maximum likelihood esti-
mation. This involves calculating the prob-
ability of getting the observed data, given
the model and the topology of the tree (but
not the branch point times). To evaluate
the likelihood of a topology 7, we would
calculate

(4) Pyu(D|7) = f P[times|r] P[Data|times, ],

where we integrate over the set S of all
branch point times compatible with the
topology 7. The analogous procedure for
the case of continuous characters is de-
scribed by Edwards (1970). Even with the
largest computers, numerical integration
methods would be far too slow to be of
any use, so that it would be necessary to
evaluate the integrals algebraically. The
methods for doing this have not been de-
veloped.

An easier approach would be simply to
estimate both topology and branch point
times, and then to ignore the branch point
time estimates. Such a procedure does not
make fully efficient use of the data, but it
will have to suffice until methods for cal-

culating (4) have been devised. More will

be said below about the properties of this
second procedure.

ESTIMATING THE PROBABILITY OF CHANGE

So far, we have assumed that u is known
in advance. If u is instead to be estimated
from the data, a complication arises. Note
that in formulas (1), (2), and (3), u always
enters into the expression in the form of
its product with the length of a tree seg-
ment (0.96u, 1.10u, 0.14u, or the sum 4.26u).
Likewise, the segment lengths are always
multiplied by u. If we halve v and double
all the segment lengths, the products will
remain the same, and therefore so will the
likelihood. In general, u will be completely
confounded with the segment lengths, so
that only their products can actually be
estimated. We might as well assume that
u = 1, so that the units of “time” we esti-
mate are actually units of expected amount
of change per character, ut. A similar
situation is encountered in maximum likeli-
hood estimation of evolutionary trees using
continuous character data (Felsenstein,
1973). We can place our trees on a true
time scale only if u is known and/or if
some of our data come from dated fossils.

A SUFFICIENT CONDITION

If it is known in advance that u is very
small compared to the evolutionary time
elapsed, so that all the ut are very small,
we can obtain the maximum likelihood tree
without estimating « and without knowing
its exact value. It turns out that the
maximum likelihood tree is exactly the
minimum-steps, or “most parsimonious”
tree. To show this we first need an ex-
pression for the likelihood of a tree. Let
vi be the length in time of the i-th segment
of the tree. For each character there may
be many states which could have existed
at each branch point in the tree. For ex-
ample, in equation (3) we had four terms,
corresponding to the presence of states 0,
1, 2, and 3 at branch point 5 of tree A. To
find the likelihood of a tree, we must sum
over all possible combinations of states in
the branch points of the tree. Let ny; be
the number of evolutionary steps (state
changes) in the i-th character, in the j-th
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segment of the tree, according to the k-th
possible assignment of character states to

branch points. Then the likelihood of the
tree is

(5) L= I;I § IjI €% (uvy) "ux/nyg !

which is a product of Poisson probabilities.
This can be rearranged to become

_ jEnuk —u%)vj
(6) L—-I;IEU e :EIanuk/nijk!.
Expressions (5) and (6) are a more gen-
eral form of the product of (1), (2), and
(3).

As u— 0, the individual terms of (6)
approach zero, the approach being faster
the larger is ?nﬁk. That quantity is simply
the number of steps required in character
i over the whole tree, assuming state assign-
ment k. As u becomes small, the term for
each character i is contributed almost en-
tirely by that particular pattern of state
assignment, k, for which 3 ny; is smallest.

Asymptotically, we can d;'op the summa-
tions over k entirely, fixing k at the single
value for each character which requires the
fewest evolutionary state changes to be
assumed. Let the number of state changes
required in character i in tree segment § be
ny. Then the likelihood expression becomes
asymptotically

Zn,, -uv,
(7) L~u" e ! leV,-“u/ni,-!.
Finally, let us take the ratio of the likeli-
hoods of two trees whose minimum total
numbers of evolutionary changes are ny
and n,. We get

-ulv

]
! I;I anll/nij]

"I (vy)m/ (i)

As u— 0 this ratio will approach either
zero or infinity, depending on whether
n; > np or ng < ng (if n; = ny, it will ap-
proach a nonzero constant). Therefore the
tree with the highest likelihood has the
smallest value of § ny, so that the most

parsimonious tree is also the maximum

likelihood tree. This accords with intuition.
If we assume that it is a priori very im-
probable that any evolutionary changes at
all will occur, then that tree will strain our
credibility least which would require the
fewest of these improbable events to ex-
plain the observed data.

We now have a sufficient condition for
the most parsimonious tree to be the cor-
rect maximum likelihood estimate. This
would seem to provide us with an accept-
able statistical justification for using the
parsimony criterion to guess the tree to-
pology. We could then assign the values
of the v; by maximizing the right-hand
portion of (7). But there is a fly in the
ointment. If our assumption were true that
evolutionary change is improbable during
the relevant period of time, most characters
should be uniform over the group. A few
would show a single change of state during
the evolution of the group. But only very
rarely would we find more than one change
of state, sothat few -or no-characters-would
show convergence. If characters showing
no changes were excluded from the data,
then each character must have at least one
change of state, but very few of the char-
acters would be expected to require more
than one change of state. Real data is cer-
tainly not like this. It is not unusual to see
at least one occurrence of convergence in
every character. With each such set of
data we encounter, our confidence in the
assumption of the improbability of changes
should grow less. It therefore seems un-
likely that we can justify most uses of par-
simony techniques on these grounds.

It might be argued that each particular
evolutionary state change is improbable,
and that the apparent convergences are
merely the result of a taxonomist scoring
two distinct states as identical. This as-
sumption does not resolve the dilemma.
The problem is not that the second state
change occurring in a character is the same
as the first. It is the number of state
changes, not their identity, which is the
problem. Assuming misclassification may
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help explain why the second change ap-
pears to be a duplicate of the first, but we
still see too many cases where more than
one state change is required to explain
the observed data.

A COUNTEREXAMPLE

If we relax the assumption that the
probability of change is small, there is no
necessary connection between likelihood
and parsimony criteria. This is illustrated
by the data and .trees in Figure 1. The
minimum-steps, or most parsimonious, tree
is shown as tree C. It requires a minimum
of 10 state changes in evolution. To find
trees A and B, I have used an iterative
maximum likelihood procedure. The like-
lihood of each tree examined was calcu-
lated using exactly the same arguments
which led to equations (1), (2), and (3).
A more systematic statement of the pro-
cedures used to calculate the likelihoods is
given below, in the next-to-last section of
this paper. The value of u was assumed to
be 1. A simple search algorithm of the
“hill-climbing” type was used, altering the
times of the branch points one at a time
and stopping when no: further alteration of
any branch point by a given small amount
resulted in an improvement of the likeli-
hood of the tree. Since the resulting maxi-
mum likelihood estimate seems not to be
particularly dependent on the details of
the search algorithm, that algorithm will
not be described further here. Starting with
a tree of form C, and using this sort of
maximum likelihood procedure, we arrive
at tree B as the tree of highest likelihood.
Two of the segments originally present in
tree C have shrunk to zero length. The
likelihood of tree B is 1.249 X 10-8. But
when we start with a different tree to-
pology, we can obtain tree A, which has a
likelihood of 1.3344 X 108 and seems to
be the maximum likelihood estimate. It
would require a minimum of 11 state
changes. This counterexample establishes
that there is no necessary identity between
parsimony methods and maximum likeli-

hood methods, unless we make assumptions
strict enough to exclude the model which
leads to likelihoods (1), (2), and (3). The
assumptions made by Farris (1973) are not
this strict. They easily include the model
which leads to those expressions. Yet he is
able to argue the identity of parisomy and
likelihood estimates, given his assumptions.
There is an apparent contradiction here
which requires explanation.

THE FARRIS PROCEDURE

Farris makes a very nonrestrictive set of
assumptions that easily include the case
in Figure 1. He assumes discrete charac-
ters, and independence of the number of
changes in different characters. He then
divides the tree into numerous short seg-
ments. He assumes that for each pair- of
characters i and §, and for each pair of
tree segments k and [, the probabilities of
a single change of the characters in the
segments are nearly enough equal that we
always have

Pik > py% for all k and I,

whenever i = j or whenever the two char-
acters i and j are ones which turn out-to
be incompatible in the sense of -Gamin and
Sokal (1965). Farris also assumes that if
pi™ is the probability of n character-state
changes in character i in segment k, then

Pu™ <[pa®]"

for all i, k, and I, and for n > 1.

If the characters have equal probabilities
of change per unit time, and if the tree is
divided into segments of equal length, the
first set of requirements will always be
met. If the probability of k changes in a
segment is also the Poisson probability

et (ut)/k!,

then the second set of requirements will
be met provided the segments are short
enough that ut<log.2. In the counter-
example given in the preceding section,
the characters had equal probabilities of
change per unit time. We therefore expect
Farris’ arguments to apply to those cases
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if we divide the tree into short segments
of equal length. '

Farris starts by estimating not only the
topology and the times of branching, but
also the phenotypes in the populations at
the end of each of these short time in-
tervals. Thus he is estimating not only
the tree but the “pathways followed by
evolving populations through time and
through character space.” For those readers
who have trouble visualizing this, Figure 2
pictures one of these entities, compatible
"with tree C in Figure 1. Farris shows con-
vincingly that the pathway which has the
highest likelihood has the smallest number
of steps required. To make a maximum
likelihood estimate of the topology of the
tree, he discards all the information he has
estimated, except for the tree topology. He
discards not only the host of estimated
phenotypes, but the branch point times as
well. The number of state changes needed
on a tree depends only on the tree topology.
Finding the “pathway” with the highest
likelihood, then discarding all information
but the topology, one will arrive at the
minimum-steps topology.

The problem with his argument is that
the procedure I presented earlier can be
used in the same way, and gives different
results. Taking tree A from Figure 1 and
dropping the times of branching, we arrive
at an estimate of the topology which is not
the same as tree C, the minimum-steps
topology. As I mentioned above, neither
of these two procedures gives a true
maximum likelihood estimate of the tree
topology. To get such an estimate, we
would have to maximize P[data|topology].
The maximum likelihood tree topology
could be searched for, using (4)—if we
could evaluate that likelihood expression.
Both Farris’ and my estimates of the tree
topology are obtained by first estimating
more than the topology, then dropping
some of that information. This is not the
same as making a maximum likelihood
estimate of the topology. If. it were, our
two estimates of the topology should always

Time
Observed, 0.0 (2,0,3) (2,0,0) 0,2,3) (0,2,0)
r-0.1 (2,\0,3) (2,0,0) (0,2,2) (0,2,0)
. o
-0.2 (2':5\,2) (2,00) 0,2,2) (0,2,0)
-03 (z,cﬁ) (2,00) 0,2,1) (0,2,0)
2 3
-04 (2,0,0) (2,0,0) (0,2,0)
-
Estimated*y o5 _(2,0,0) {0,1,0)
-06 (Z\Q.O) (0,00
-
-07 (1:0\.0) (o/,o,o)
-0.8 (1,0,0) (00,0)
=
Lo.g (0,0,0)

Fic. 2.—A “pathway” of the sort estimated by
Farris (1973). Data are those given in Figure 1.
Each triple represents the phenotypes of the three
characters in one population. Steps are marked by
bars across the arrows.

be identical, which they are not. Only the
expression based on (4) is the maximum
likelihood estimate of the topology. If we
cannot use (4), either because we have no
model of branching to give us P[times|r]
or because we cannot evaluate the integrals,
my procedure would seem to have at least
one major advantage, consistency (in the
statistical sense).

CONSISTENCY OF ESTIMATES

An estimate has the property of consis-
tency if, as we sample more and more data,
the estimate converges on the true value.
Maximum likelihood estimates have this
property under a wide variety of circum-
stances (Wald, 1949). Wald gives eight
conditions which, if all are satisfied, guar-
antee that the maximum likelihood estimate
is consistent. These conditions are too com-
plex to discuss hére in detail, but it can
be shown that estimates based on the like-
lihood expressions (4), (5), and (6) satisfy
them, so that these estimates are consistent.
Expression (4) is used to estimate the tree
topology, expressions (5) and (6) are used
to estimate the tree, including the branch
point times. If we estimate the tree to-
pology by first estimating the tree, then dis-
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carding the branch point times, we are not
carrying out maximum likelihood estima-
tion of the tree topology. However, the
estimate of tree topology will nevertheless
be consistent. As we collect more and more
data, the estimate of the tree converges on
the true tree, with respect to both its
topology and its branch point times. A
forteriori, then, the estimate of the topology
obtained by ignoring the branch point
times must converge on the true topology.

This will not necessarily apply to Farris’
estimate of the topology. First one would
have to prove the consistency of the esti-
mate of the “pathway.” But in estimating
the “pathway,” the number of parameters
being estimated increases without limit as
the number of characters increases. Each
new character brings with it a host of states
to be estimated. The assumptions of Wald
(1949) are violated in such a case. Wald
assumes that there are a finite number, k,
of unknown parameters to be estimated.
He also assumes that the observed variables
are independent and identically distributed.
In the present case the observed variable
is the n-tuple of observed tip phenotypes
for one character. If the distribution of
each character depends on different un-
known paramenters (the node phenotypes
and the initial character state), Wald’s
assumption of identical distributions is
violated. In fact, any likelihood method
which estimates even one ancestor’s state
per character will not necessarily give a
consistent estimate. Of course, nothing
said here rules out the possibility that
Farris’ estimate of tree topology has the
property of consistency. Wald’s conditions
are sufficient, but they are not necessary
for consistency. For some examples and
discussion of the problem of infinitely many
“nuisance parameters,” the reader is re-
ferred to the paper by Kalbfleisch and
Sprott (1970).

AN ALGORITHM FOR CALCULATING
LIKELIHOODS

Expressions (1), (2), and (3) were
derived by inspection, and equations (5)

and (6) involve summing over all possible
assignments k of states to branch points, a
very large number of possibilities. It may
be of interest to derive a systematic pro-
cedure for calculating the likelihood which
is applicable in a great many cases and
which uses a common property of many
models to greatly simplify the calculation.
In many models, the probability of chang-
ing from state i to state j during one seg-
ment of the tree does not depend in any
way on how the population arrived at state
i in the first place. Therefore the changes
of state constitute a Markov process. Since
we assume independence of evolution in
different characters, we calculate the like-
lihood of the tree separately for each char-
acter and then multiply these. Therefore
we need only consider how to calculate
the likelihood for one character.

Consider two nodes (tips or branch
points), i and j, which have the same im-
mediate ancestor, k. Let L, be the prob-
ability of obtaining the data observed on
all the tips above node 4, given that node 4
has state m. Suppose that we are given
the Ly for all values of m, and for node §
we are given the Ly, for all values of n.
We want to calculate for their ancestor,
node k, the Ly, for all values of p. We are
given Pi(p,m) and Pjp,n), the transition
probabilities for segments k — i and k - j
of the tree. That is, Py(p,m) is the prob-
ability that in segment k — i we end up
with state m given that we started with
state p.

To calculate the Ly, we use
(9) Ly, =33P [p—m in segment k—i and

p—>n in segment k—j] Lin Ly
= E % Pl(p,m) P;L(P:n) Liijn

= (E P;(p,m) Lim) (§ P;(p,n) Ljy).

The indices m, n, and p run over all states
of the character.

Of course, to use this formula we must
know the Py(p,m). These will depend on
the specific model of evolution assumed
for the character. In the example given
earlier in this paper, the character state
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tree was of the foorm 0>1—>2— ..., so

that
(10) Pi(p,m) = ettt X
[u(ti—t) ]*?/(m-p)!

where t; — t, is the duration of segment
k — i. If the character state tree, and the
probability of change, u, are the same for
all characters, we can use the same tran-
sition probabilities Py(p,m) for all charac-
ters. The transition probability from state
p to state m will differ for each segment,
since the segment lengths will differ.

We start the calculation of the likelihood
by assigning values of Ly, to the tips of
the tree. Since the states of the tip popu-
lations have (usually) been observed, one
of the L, will be 1, and the rest will be
zero. If the state of the character in a
particular tip is not known, this can be
taken into account by setting all the Ly,
to 1 for that tip (recall that Ly, is the
probability of obtaining the observed data
at or above node i, given that the state at
that point is m). Another possible com-
plication is when the observed phenotype
is compatible with a number of underlying
states. In that case, the Ly, corresponding
to those states are 1 and the rest are zero.
This will be the case with protein sequence
data, where the observations are amino
acids, each of which is compatible with a
set of underlying codons. We will have 64
states, and 64 X 64 transition probabilities
for each tree segment. The observed amino
acids each define the set of possible codons
at a tip.

Given the Ly, for each tip, we now pro-
ceed down the tree. There will always be
at least one branch point which is the
immediate ancestor of two or more tips.
We can use (9) to calculate the Ly, for
that branch point. Now consider the two
tips to have been “pruned” off the tree, and
consider the branch point to have become
a tip. We once again have a tree with
values of Ly, for each tip (but now there
is one less tip on the tree). We can repeat
the process, calculating the Ly, for another
branch point, pruning off the segments

above that node, and so on. We continue
the process until we arrive at the bottom
branch point and have calculated its L.
If the state of this original population is
known to have been, say, state s, the likeli-
hood of the tree with respect to the char-
acter is simply Lj, by definition. If we
did not know state s in advance, one might
think that we could estimate it by choosing
the largest of these final Lyy. But this in-
troduces one new parameter to be esti-
mated per character. As the number of
characters grows by collection of new data,
so will the number of parameters being
estimated, and we may lose the property
of consistency of the tree estimate.

In certain cases, we should be able to
get around this. If the character state tree
contains an infinite number of states both
preceding and following the ones observed,
the character state treeis ... > -2—>-1—
0—>1—>2->3—.... Then when we ob-
serve states 0 and 3, these numbers have
no absolute meaning: all we know is that
they are 3 states apart on the tree. If we
had observed states 1 and 4, we might have
coded them as states 0 and 3. If the true
initial state is 0, the probability of ob-
serving two states three steps apart is

P(0,30) + P(L4/0) +P(25]0) +...,

where P(ijk) is the probability of ob-
serving states i and § given that the initial
state in the original population was k. By
the symmetry of the situation, this is equal
to

P(0,3|0) + P(0,3-1) + P(0,3]-2) + .. ..

Thus if all we can observe are the differ-
ences between states and we get no in-
formation from the absolute identities of
the states, we can obtain the likelihood of
these differences by calculating for the
bottom branch point of the tree

(11) L =3 L.
This gets us around the necessity of esti-

mating one new parameter for each charac-
ter. It is a “marginal likelihood” procedure
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as defined by Kalbfleisch and Sprott (1970).
In the case of continuous characters, a
closely analogous procedure has been de-
rived (Felsenstein, 1973). Of course, this
procedure will not work if we do not have
this kind of character state tree: how to
deal with this problem more generally is
not clear.

PERSPECTIVE

Maximum likelihood and “parsimony”
are not, in general, identical. The condi-
tions for the parsimony method to be jus-
tifiable as the maximum-likelihood method
are often not met. Although it is possible
to carry out maximum likelihood estimation
directly, the computing procedures for
doing so are rather slow. Furthermore, it
should be emphasized that it is rather
difficult to find cases in which the parsi-
mony and maximum likelihood methods
give different results. For many sets of
data, the “parsimony” method may be a
good approximation to the maximum like-
lihood method even when probabilities of
change of the character are not small. How-
ever, if the parsimony technique is taken
to yield a genuine maximum likelihood esti-
mate, the assumptions which are thought
to make this interpretation possible should
be clearly stated. If evolutionary trees are
to be inferred in any justifiable way, then
the maximum likelihood criterion (or some
other statistical inference method) must be
used to infer them.
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